Subscribe to Canada Free Press for FREE

New research sheds light on how carbonation affects the creaminess and smoothness of beverages.

The science behind the fizz: How the bubbles make the beverage


By —— Bio and Archives--February 5, 2018

Comments | Print Friendly | Subscribe | Email Us

The science behind the fizz: How the bubbles make the beverage
From popping a bottle of champagne for a celebration to cracking open a soda while watching the Super Bowl, everyone is familiar with fizz. But little is known about the chemistry behind the bubbles. Now, one group sheds some light on how carbonation can affect the creaminess and smoothness of beverages, as reported in ACS’ The Journal of Physical Chemistry B.

Carbonated beverages are popular, with dozens on the market in the U.S. But very little is known about how the carbon dioxide in them interacts with the drink when it is cracked open. Previous studies have focused on alcoholic beverages and have reported findings on how the carbon dioxide bubbles rise and pop. In addition, scientists have noted that hydrogen bonds within the beverage solution are impacted by additives and other components in the water used in the process. Yakun Chen, Ji Lv and Kaixin Ren wanted to see how drink additives such as sugar, salt and added flavors affect the carbon dioxide and ultimately, the taste of the drink.

The team studied how different flavorings affected the carbon dioxide in champagnes, cola drinks and club sodas by setting up simulations. The group first examined how fast carbon dioxide diffused within each solution. They found that additives like alcohol, table sugar or baking soda would reduce the rate of diffusion, to an extent, which would leave soda fizzy for a longer period of time. The researchers also noted that the simulations showed that as carbon dioxide interacts with additives like sugar, it also interacts with the water that makes up the majority of these beverages. When a drink additive was incorporated, the team noticed that the number of hydrogen bonds decreased with their simulation, ultimately impacting the taste of the drink.

The authors acknowledge funding from the National Natural Science Foundation of China.

CO2 Diffusion in Various Carbonated Beverages: A Molecular Dynamics Study


American Chemical Society -- Bio and Archives | Comments

American Chemical Society, ACS is a congressionally chartered independent membership organization which represents professionals at all degree levels and in all fields of chemistry and sciences that involve chemistry.


Commenting Policy

Please adhere to our commenting policy to avoid being banned. As a privately owned website, we reserve the right to remove any comment and ban any user at any time.

Comments that contain spam, advertising, vulgarity, threats of violence, racism, anti-Semitism, or personal or abusive attacks on other users may be removed and result in a ban.
-- Follow these instructions on registering: