A chemical weapons detector built with Legos® and a smartphone could detect nerve agents at contamination sites

Building a chemical weapons detector with Legos®

By —— Bio and Archives--July 13, 2018

Science-Technology | Comments | Print Friendly | Subscribe | Email Us

Building a chemical weapons detector with Legos®
Nerve agents are scary stuff. They are among the most deadly substances on earth, yet can be odorless, tasteless and difficult to detect. But researchers now report in ACS Central Science that they have adapted building materials normally associated with children’s toys and a cell phone to help sense these compounds. The new method can sensitively detect these poisons, quantify the amount and distinguish between different classes present at contaminated sites.


Because nerve agents shut off enzymes that control the body’s nervous system function, death comes quickly — in minutes or even seconds. Thus, it’s important to detect these compounds quickly so that swift action can be taken. But in addition to taking too long, current methods require expensive instruments and are poorly suited for field use. Complicating matters, there are two main categories of nerve agents, requiring different decontamination protocols. Existing tools are not effective in differentiating between these classes, which is important because one is more toxic and less volatile than the other, leading to a greater potential for mass harm. Eric Anslyn, Edward M. Marcotte and colleagues sought to develop an instrumental set-up and method that addressed these issues and would be simple to use.

The researchers developed a cascade of reactions that amplify an optical signal that results from a byproduct of a decomposition reaction of the nerve agents. The resulting mixtures change their color and intensity of emission relative to the amount of chemical weapon present. This visual change of emission provides a sensitive test that can be read using common, inexpensive household and laboratory items. The simple design features a LEGO® box with a template to guide a smartphone’s placement on a stage, where the phone acts as the instrument’s camera. The only other necessary components are a UV/visible lamp and a standard 96-well test plate. Free software helps analyze the resulting image. To encourage wide adoption of their technology, the researchers uploaded their analytic code, image guides and a demonstration video to GitHub.

The authors acknowledge funding from the U.S. Department of Defense, the Howard Hughes Medical Institute and the W.M. Keck Foundation.

Photography Coupled with Self-Propagating Chemical Cascades: Differentiation and Quantitation of G- and V-Nerve Agent Mimics via Chromaticity


Only YOU can save CFP from Social Media Suppression. Tweet, Post, Forward, Subscribe or Bookmark us

American Chemical Society -- Bio and Archives | Comments

American Chemical Society, ACS is a congressionally chartered independent membership organization which represents professionals at all degree levels and in all fields of chemistry and sciences that involve chemistry.

Commenting Policy

Please adhere to our commenting policy to avoid being banned. As a privately owned website, we reserve the right to remove any comment and ban any user at any time.

Comments that contain spam, advertising, vulgarity, threats of violence and death, racism, anti-Semitism, or personal or abusive attacks on other users may be removed and result in a ban.
-- Follow these instructions on registering: