WhatFinger

Microbial proteins could replace crops grown to feed animals

Microbial proteins could supplement animal feed, reduce land use and pollution


By —— Bio and Archives--June 20, 2018

Global Warming-Energy-Environment | Comments | Print Friendly | Subscribe | Email Us

Microbial proteins could supplement animal feed, reduce land use and pollution
As the world’s population swells, humans will have to figure out how to keep feeding livestock without using even larger tracts of land to grow food for them or causing more harm to the environment. Scientists report in a study appearing in Environmental Science & Technology that the key could be bacteria that can efficiently produce large amounts of microbial proteins. These proteins could replace some of the crops grown today to feed animals.

Decoupling Livestock from Land Use through Industrial Feed Production Pathways

Livestock is the world’s largest user of land resources, with pasture and land dedicated to the production of feed representing almost 80 percent of the planet’s total agricultural land, according to the Food and Agricultural Organization of the United Nations.  Producing these crops is one of the most important contributors to global pollution and can lead to large-scale deforestation and biodiversity loss. By 2050, estimates suggest that the world’s population will top 9 billion people, increasing the demand for livestock to feed humans. In turn, feeding these animals will require more land and could lead to additional environmental harm. One possible alternative is microbial proteins, which were first produced on an industrial scale using methane in the 1970s. Now with growing demand and advances in technology, Benjamin L. Bodirsky, Ilje Pikaar and colleagues wanted to analyze the long-term effects that incorporating microbial proteins could have on land use, climate-warming greenhouse gas emissions and reactive nitrogen pollution.

The researchers used an advanced computer model to generate projected land-use and agricultural-production patterns. Overall, the 48 scenarios tested suggest that by 2050, microbial proteins produced with hydrogen and other gas feedstocks could replace between 175 and 307 million tons of crop-based animal feed annually, or up to 10 to 19 percent of conventional crop-based animal feed protein demand. The researchers say this change could have a substantial global impact. By replacing 13 percent of the protein in feed with microbial proteins, the research team projects that worldwide cropland usage could be reduced by 6 percent, global nitrogen losses from croplands by 8 percent and agricultural greenhouse gas emissions by 7 percent.

The authors acknowledge funding from the Australian National Research Council, the MERMAID project, the Ghent University Multidisciplinary Partnership-Biotechnology and the European Union’s 2020 research and innovation program. 

Decoupling Livestock from Land Use through Industrial Feed Production Pathways


CFPSubcribe

Only YOU can save CFP from Social Media Suppression. Tweet, Post, Forward, Subscribe or Bookmark us

American Chemical Society -- Bio and Archives | Comments

American Chemical Society, ACS is a congressionally chartered independent membership organization which represents professionals at all degree levels and in all fields of chemistry and sciences that involve chemistry.


Commenting Policy

Please adhere to our commenting policy to avoid being banned. As a privately owned website, we reserve the right to remove any comment and ban any user at any time.

Comments that contain spam, advertising, vulgarity, threats of violence and death, racism, anti-Semitism, or personal or abusive attacks on other users may be removed and result in a ban.
-- Follow these instructions on registering: