Subscribe to Canada Free Press for FREE

Chemotherapy could someday have fewer side effects if loaded into a "protocell" nanoparticle that specifically burrows into the deepest tumor regions

Bridging tumor moats with potent drug delivery particles


By —— Bio and Archives--January 17, 2018

Comments | Print Friendly | Subscribe | Email Us

Bridging tumor moats with potent drug delivery particles
Despite herculean efforts, cancer remains a formidable disease, with each malignant subtype responding differently to therapeutics. One hurdle specific to treating solid tumors is a protective layer called an extracellular matrix that can prevent chemotherapeutic agents from penetrating the tumor’s core. Scientists now report results in ACS’ Chemistry of Materials showing that, by cloaking anti-cancer drugs in a specially designed particle, they could target and destroy tumor cells deep inside a malignant mass in vitro.

For tumors that can’t be extracted with surgery, radiation and chemotherapy are the treatments of choice, but both can involve serious side effects due to a lack of specificity: They’ll kill healthy cells along with malignant ones. Researchers have long known that, thanks to the unique blood vessel architecture surrounding tumors, nanoparticles can easily pass into the cancer zone, offering a potential route for the specific delivery of chemotherapies to cancer cells. However, efforts to exploit this phenomenon have fallen short, with experimental drug-loaded particles failing because they can’t get through the dense extracellular matrix or they lose the therapeutic payload en route to the tumor’s interior. Alejandro Baeza, C. Jeffrey Brinker, Maria Vallet-Regi and colleagues addressed this shortcoming by developing a brand-new type of particle.

The researchers created a “protocell,” a nanoparticle that can carve through the extracellular matrix, delivering cell-killing doses of drug to the deepest tumor regions. To develop the protocell, the team started with a mesoporous silica skeleton with a high internal surface area that can contain a large amount of drug. They surrounded this skeleton with a lipid bilayer outfitted with an array of tools to help the protocell deliver its drug arsenal to the desired locale, including enzymes that cleave collagen, a major component of the tumor’s extracellular matrix. The protocell also features pH-sensitive ligands that trigger the release of the drug upon entry into the relatively acidic interior of a cell, ensuring the medication is only delivered where needed. The researchers tested the protocells in a 3-D cell culture model of a solid tumor, showing that the protocell penetrates and destroys malignant cells better than drug-loaded protocells without the enhanced toolkit.e potential to one day treat cancer and other diseases in the female reproductive tract.

The authors acknowledge funding from the European Research Council, Sandia National Laboratories and the Leukemia and Lymphoma Society.

Multifunctional Protocells for Enhanced Penetration in 3D Extracellular Tumoral Matrices


American Chemical Society -- Bio and Archives | Comments

American Chemical Society, ACS is a congressionally chartered independent membership organization which represents professionals at all degree levels and in all fields of chemistry and sciences that involve chemistry.


Commenting Policy

Please adhere to our commenting policy to avoid being banned. As a privately owned website, we reserve the right to remove any comment and ban any user at any time.

Comments that contain spam, advertising, vulgarity, threats of violence, racism, anti-Semitism, or personal or abusive attacks on other users may be removed and result in a ban.
-- Follow these instructions on registering: